1. Topologie des courbes algébriques réelles

L'étude de la topologie des courbes algébriques réelles trouve son origine dans la publication du résultat suivant par A. Harnack en 1876 dans [2].

Théorème 1.1 (Harnack, [2]). — Le nombre de composantes connexes de la partie réelle d'une courbe algébrique réelle plane projective de degré d est compris entre 0 (ou 1 si d est impair) et $\frac{1}{2}(d - 1)(d - 2) + 1$. De plus, pour tout entier strictement positif d, il existe une courbe algébrique réelle plane projective non singulière de degré d dont la partie réelle a exactement $\frac{1}{2}(d - 1)(d - 2) + 1$ composantes connexes.

Rappelons qu'une **courbe algébrique réelle plane projective** de degré d est un polynôme homogène $P \in \mathbb{R}[X_0, X_1, X_2]$ de degré d, considéré à multiplication par une constante réelle non nulle près. Une telle courbe est dite **non singulière** si les dérivées partielles $\partial_0 P$, $\partial_1 P$ et $\partial_2 P$ ne s'annulent pas simultanément dans le plan projectif complexe $\mathbb{C}P^2$. Si X est une courbe algébrique réelle plane projective qui est déterminée par un polynôme P, la **partie réelle** $\mathbb{R}X$ de X est le lieu des zéros de P dans le plan projectif réel $\mathbb{R}P^2$. Si X est non singulière, les composantes connexes de $\mathbb{R}X$ sont des cercles plongés dans $\mathbb{R}P^2$, et leur position relative définit le type topologique de la courbe.

En 1900, lorsque D. Hilbert formule sa célèbre liste des 23 problèmes mathématiques pour le XXème siècle [3], la classification topologique des courbes algébriques non singulières dans $\mathbb{R}P^2$ est connue jusqu'en degré 5. Le 16ème problème de Hilbert soulève la question de classification des courbes de degré 6. Si de nombreux travaux ont menés autour de ce problème durant la première moitié du XXème siècle, il faut attendre la fin des années 60 pour voir D. A. Gudkov achever dans [1] la classification topologique des courbes non singulières de degré 6 dans $\mathbb{R}P^2$ en adaptant une méthode de construction développée par Hilbert.

2. La méthode du patchwork de Viro

Toutes les méthodes de constructions de courbes algébriques réelles utilisées avant 1979 sont inspirées de celle utilisée par Harnack. Une étape décisive en géométrie algébrique réelle est la mise au point, à la fin des années 70 par O. Ya. Viro, d’une nouvelle méthode de construction de variétés algébriques réelles appelée **méthode du patchwork**. Elle a permis, entre autres, à Viro d’achever la classification des courbes non singulières de degré 7 dans $\mathbb{R}P^2$, et à I. Itenberg de construire des contre-exemples réfutant la conjecture de Ragsdale, vieille de près d’un siècle (voir [8] et [4, 7]).
La méthode du patchwork est également à la base de la preuve du théorème de correspondance de G. Mikhalkin [5]. Ce théorème établit une correspondance entre des courbes algébriques complexes et des objets apparus récemment dans plusieurs branches de mathématiques, appelés courbes tropicales.

3. Courbes tropicales et patchwork combinatoire

Définition 1. — Soit $n \geq 2$ un entier. Une courbe tropicale générique dans \mathbb{R}^n est un graphe connexe rectiligne pondéré T dans \mathbb{R}^n (chaque arête est soit un segment reliant deux sommets soit une demi-droite ayant un sommet pour seule extrémité ; chaque arête est munie d’un poids qui est un entier strictement positif) tel que

- si $n \geq 3$ (respectivement, $n = 2$), chaque sommet de T soit de valence 3 (respectivement, de valence 3 ou 4),
- chaque arête de T soit dirigée par un vecteur à coordonnées entières,
- la condition d'équilibre suivante soit satisfaite à chaque sommet V de T : $w_{v_1} \cdots v_r$ sont les vecteurs primitifs entiers (issues de V) des arêtes adjacentes à V et $w_{v_1} \cdots w_r$ leurs poids respectifs, alors $w_{v_1} v_{v_1} \cdots v_r = 0$.

Le genre d’une courbe tropicale générique T dans \mathbb{R}^n est égal à $b_1(T) - v_4(T)$, où $b_1(T)$ est le premier nombre de Betti de T, et $v_4(T)$ est le nombre de sommets de valence 4 de T. On dit qu’une courbe tropicale générique dans \mathbb{R}^n est projective de degré d si elle possède, pour seules arêtes non bornées, d arêtes dans chacune des directions $(-1,0,\ldots,0), \ldots, (0,\ldots,0,-1)$ et $(1,1,\ldots,1)$, quand ces arêtes sont comptées avec une multiplicité égale à leur poids.

![Diagram](image_url)

(a) Une courbe tropicale générique projective de degré 2 dans \mathbb{R}^2.

(b) La même conique tropicale munie d’une structure réelle.

Comme en géométrie algébrique « classique », les courbes tropicales ont un pendant réel. Si T est une courbe tropicale générique projective dans \mathbb{R}^n telle que tous les sommets de T soient de valence 3, il est possible de munir T d’une structure réelle${}$.

Dans le cas où toutes les arêtes de T sont de poids impairs, une telle structure est décrite de la façon suivante : chaque arête de T est munie de deux n-uplets de signes de telle manière que
les deux n-uplets \(\varepsilon, \varepsilon' \in \{-, +\}^n \) associés à une arête dirigée par un vecteur entier primitif \(\nu \) vérifient \(\Sigma = \Sigma' + \nu \mod 2 \), où \(\Sigma \in \mathbb{Z}^n \) (respectivement, \(\Sigma' \in \mathbb{Z}^n \)) est obtenu à partir de \(\varepsilon \) (respectivement, \(\varepsilon' \)) en remplaçant chaque signe \(+ \) par 0 et chaque signe \(- \) par 1,

- si \(s_1, s_2, s_3 \) sont les paires de n-uplets de signes qui munissent les 3 arêtes adjacentes à un sommet \(V \) de \(T \), alors chaque n-uplet de signes appartenant à l’un des \(s_i \) appartient à exactement l’un des deux autres.

Une telle courbe est appelée courbe tropicale réelle. Sur la figure (b), la conique tropicale de la figure (a) est munie d’une « structure réelle » : chacune de ses arêtes est de poids 1, et équipée d’une paire de couples de signes de sorte que les conditions de compatibilité énoncées ci-dessus soient vérifiées.

La réunion de toutes les paires \((e, \varepsilon)\), où \(e \) est une arête de \(T \) et \(\varepsilon \) est un couple de signes dont cette arête est munie, est appelée la partie réelle de \(T \) et est notée \(RT \).

C’est un sous-ensemble de \(\mathbb{R}^n \times \{-, +\}^n \). La projection réelle \(RT \) d’une courbe tropicale projective réelle \(T \subset \mathbb{R}^n \) est l’adhérence dans l’espace projectif réel \(\mathbb{R}P^n \to (\mathbb{R}^*)^n \) de l’image de \(RT \) dans \((\mathbb{R}^*)^n \) par l’application \(\mu : \mathbb{R}^n \times \{-, +\}^n \to (\mathbb{R}^*)^n \) définie par

\[
\mu(x_1, \ldots, x_n, \varepsilon_1, \ldots, \varepsilon_n) = (\exp(x_1), \ldots, \exp(x_n)).
\]

La projection réelle \(RT \) une sous-variété topologique de dimension 1 de \(\mathbb{R}P^n \). Le cas particulier le plus élémentaire de la méthode du patchwork de Viro peut être énoncé de la façon suivante.

Théorème 3.1 (Patchwork combinatoire). — Si \(T \) est une courbe tropicale générique projective réelle dans \(\mathbb{R}^2 \) (n’ayant que des sommets de valence 3), il existe une courbe algébrique non singulière \(X \) dans \(\mathbb{R}P^2 \), de même degré que \(T \), dont la partie réelle est isotope à \(RT \).

Mikhalkin a étendu ce résultat aux courbes tropicales réelles dans \(\mathbb{R}^3 \). Ce résultat ne s’applique qu’à une certaine classe de courbes tropicales, vérifiant une condition dite de régularité.

Théorème 3.2. — Si \(T \) est une courbe tropicale générique projective régulière réelle dans \(\mathbb{R}^3 \), il existe une courbe algébrique non singulière \(X \) dans \(\mathbb{R}P^3 \), de même degré que \(T \), dont la partie réelle est isotope à \(RT \).

Ce résultat permet de démontrer l’existence de courbes algébriques réelles ayant une topologie donnée dans \(\mathbb{R}P^3 \) en construisant des courbes tropicales régulières réelles dont la projection réelle a une topologie prescrite.

4. Résultats

Dans \(\mathbb{R}P^3 \), le type topologique d’une courbe algébrique est déterminé par le type d’entrelacs réalisé par la partie réelle de la courbe. J’ai travaillé sur la question suivante qui peut être vue comme analogue du 16ème problème de Hilbert :

En quel genre et degré est-il possible de réaliser un nœud donné comme partie réelle d’une courbe algébrique réelle non singulière dans \(\mathbb{R}P^3 \) ?
Cette question est relativement nouvelle. Un des résultats publiés autour de cette question est le suivant, dû à Mikhalkin (voir [6]).

Théorème 4.1 (G. Mikhalkin). — Soit $g \geq 0$ un entier, et $L \subset \mathbb{R}^3$ un entrelacs ayant $g + 1$ composantes connexes. Il existe une courbe algébrique non singulière X de genre g dans $\mathbb{R}P^3$, dont la partie réelle est isotope à $i(L)$, où $i : \mathbb{R}^3 \hookrightarrow \mathbb{R}P^3$ est l'application définie par $i(x, y, z) = [x : y : z : 1]$.

Puisque la partie réelle d'une courbe réelle de genre g a au plus $g + 1$ composantes connexes, le résultat de Mikhalkin est optimal du point de vue de genre. Par contre, ce résultat ne donne aucune information sur le degré d'une réalisation algébrique d'un entrelacs donné.

La stratégie adoptée dans cette thèse est la suivante : après avoir ciblé une classe de noeuds dans $\mathbb{R}P^3$, on cherche à réaliser les noeuds de cette classe comme projectivisations de courbes tropicales réelles génériques et régulières de genre 1 et de petit degré dans \mathbb{R}^3, et ensuite on utilise le théorème de Mikhalkin 3.2.

Théorème 4.2. — Soit K un noeud pouvant être représenté comme la clôture d'une tresse ayant k brins et N croisements. Alors, il existe une courbe algébrique non singulière X dans $\mathbb{R}P^3$, de degré $N + 3k$ et de genre 1, dont la partie réelle a deux composantes connexes dont l'une, notée RX_0, est isotope à $i(K)$.

Théorème 4.3. — Soit K un noeud torique d'indice (p,q), avec $p = 2$ ou p impair, et q impair. Alors, il existe une courbe algébrique non singulière X dans $\mathbb{R}P^3$, de degré $2p + q - 1$ et de genre 1, dont la partie réelle est isotope à $i(K)$.

Références

