UNIVERSITE DE STRASBOURG

RESUME DE LA THESE DE DOCTORAT

Discipline : Science pour l'ingénieur

Spécialité (facultative) : Mécanique des fluides

Présentée par :
Vivien SCHMITT

Titre : Investigation expérimentale et numérique des ouvrages de séparation particulaire en assainissement

Unité de Recherche : Laboratoire des sciences de l'Ingénieur, de l'Informatique et de l'Imagerie (ICube) - UMR 7357

Directeur de Thèse :
Vazquez José, Professeur à l'Ecole Nationale du Génie de l'Eau et de l'Environnement de Strasbourg

Localisation : Département mécanique, 2 rue Boussingault 67000 Strasbourg

ECOLES DOCTORALES :
(cocher la case)

☐ ED - Sciences de l'Homme et des sociétés
☐ ED 99 - Humanités
☐ ED 101 - Droit, sciences politique et histoire
☐ ED 182 - Physique et chimie physique
☐ ED 221 - Augustin Cournot
☐ ED 222 - Sciences chimiques
☒ ED 269 - Mathématiques, sciences de l'information et de l'ingénieur
☐ ED 270 - Théologie et sciences religieuses
☐ ED 413 - Sciences de la terre, de l'univers et de l'environnement
☐ ED 414 - Sciences de la vie et de la santé
Résumé :

Les ouvrages de séparation particulière en assainissement sont couramment utilisés en génie hydraulique pour traiter les effluents et protéger les milieux récepteurs. L'efficacité de ces ouvrages à retenir des particules passe par la détermination préalable de l'écoulement. De ce fait, la modélisation numérique 3D est l'outil idéal pour comprendre, analyser et optimiser le fonctionnement hydraulique d'un ouvrage. Cependant, pour des ouvrages où les caractéristiques géométriques sont complexes (dégrilleurs, décanteurs lamellaires, séparateurs hydrodynamiques...), le fonctionnement hydraulique devient lui aussi complexe et les phénomènes physiques en jeu se situent parfois à des échelles très différentes.

Dans ce contexte, l'étude d'un séparateur hydrodynamique utilisant la séparation tangentielle le long d'une grille a été effectuée en utilisant les approches expérimentales et numériques.

L'objectif principal de la thèse consiste à développer une méthode multi-échelle permettant de prédire l'écoulement et le transport solide dans l'ensemble de l'ouvrage, mais aussi à proximité de la grille de séparation. Cette stratégie, basée sur une approche de type up-scaling, consiste en :

- une modélisation à petite échelle : il s'agit d'utiliser une approche déterministe de l'écoulement à l'échelle de la grille, en utilisant une portion réduite de grille
- une modélisation conceptuelle de la grille à grande échelle : il s'agit d'homogénéiser le comportement de la grille à l'aide d'une approche de type milieu poreux et reproduire ce comportement à l'échelle de l'ouvrage

L'avantage de cette approche est qu'elle permet de contourner la difficulté liée à la discrétisation spatiale la géométrie de l'ouvrage. De plus, l'utilisation de deux sous-modèles permet de réduire considérablement le temps de simulation. La principale difficulté de l'approche a été d'établir le calage du milieu poreux permettant de lier les deux modèles.

Cette méthode numérique "multi-échelle" a été élaboré à partir du code de calcul 3D *Ansys Fluent*® et validée à partir de campagnes expérimentales en laboratoire. Après confrontation des deux approches, la méthode numérique a été appliquée à un ouvrage réel dans l'objectif d'étudier le fonctionnement d'un ouvrage à l'échelle du terrain. De plus, la méthode étant au point, nous sommes dans la capacité de tester différentes configurations pour optimiser le fonctionnement de l'ouvrage, soit en modifiant le comportement hydraulique global, soit en modifiant les phénomènes physiques à proximité de la grille.
Étude expérimentale

Pour mieux comprendre les phénomènes physiques mis en jeu et dans l'optique de valider la méthode numérique multi-échelle, un pilote expérimental a été construit. Cet ouvrage circulaire d'environ 2500 litres est équipé par de nombreux instruments de pointe : un vélocimètre ADV capable de mesurer les vitesses et les phénomènes de turbulence, des sondes ultrason pour mesurer la surface libre, un système d'acquisition et automatisé des pompes et des débitmètres électromagnétiques.

La modularité de la partie centrale du pilote permet de tester différents types de grille. Ainsi, nous avons pu tester l'influence de la grille sur l'écoulement global (champ de vitesse, perte de charge, ...) mais aussi mesurer les phénomènes physiques propres à chaque grille (vitesse et turbulence pour des grilles de type métal déployé ou des plaques perforées). Les résultats obtenus ont montré la faible influence de la grille sur le comportement hydraulique global. Par contre, les mesures à proximité immédiate de la grille ont mis en évidence l'influence de l'inclinaison du métal déployé en favorisant la production d'énergie cinétique turbulente à l'amont de la grille.

Concernant le transport solide, plusieurs expériences ont été réalisées. L'utilisation de macro-déchets a permis de visualiser la trajectoire de ce type de polluant et d'observer l'aptitude de l'ouvrage face au colmatage. Nous avons également testé l'ouvrage face à la rétention des particules. Les processus de sédimentation ont pu être appréciés pour les particules les plus lourdes. Les particules de faible masse volumique, pilotées par l'hydrodynamique, sont contraintes à traverser la grille. Ces particules ont donc permis d'établir le pouvoir de coupure des différentes grilles, mais reste à savoir si l'efficacité des grilles est liée aux phénomènes de turbulence ou bien à la taille des orifices.

Modélisation numérique 3D

La première partie de ce travail de modélisation a été de développer une stratégie multi-échelle permettant de simuler l'écoulement dans l'ouvrage et de visualiser les phénomènes physiques à proximité de la grille. Cette approche qui consiste à séparer les deux échelles spatiales a nécessité la construction de deux modèles. Un modèle monophasique représentant une portion de grille a permis d'étudier les phénomènes locaux. D'autre part, un modèle complet de l'ouvrage mais utilisant une approche conceptuelle de grille a permis d'évaluer l'écoulement global. La simplification de la grille par un milieu poreux permet de diminuer considérablement le nombre de mailles et par conséquent le temps de calcul. Par ailleurs, le calage de la porosité est effectué à partir du modèle local : un bilan de puissance permet d'estimer les pertes de charge de la grille dans le modèle local et le milieu poreux reproduit
cette perte énergétique à l'échelle globale, ce qui permet d'établir le liant permettant de permuter entre les différentes échelles.
Concernant le transport solide, notre choix s'est porté sur l'utilisation d'une approche euler-lagragienne. Cette technique a été utilisée et validée à plusieurs reprises sur des ouvrages en assainissement. En revanche, cette méthode pose quelques difficultés dans le cadre de la stratégie multi-échelle. Si un lien peut être fait pour l'écoulement, il n'est en revanche pas possible de faire de lien pour le transport solide. Par conséquent, l'étude de l'efficacité a été réalisée en évaluant les processus de sédimentation à l'aide du modèle global et la séparation tangentielle à l'aide du modèle local.

Validation de la méthode et confrontation des deux approches

La comparaison entre expérimental et numérique permet de valider l'approche multi-échelle développée dans le cadre de cette thèse.

La comparaison de la perte de charge calculée à partir dans le modèle local et celle obtenue expérimentalement n'est différente qu'à 2 % près pour le débit nominal. Par conséquent, l'utilisation d'une portion de grille pour étudier les phénomènes locaux est justifiée. Étant donné que les variables globales sont correctes, on peut supposer que les phénomènes locaux le sont également. Ainsi le modèle local permet d'observer de nombreux phénomènes difficilement décelables via l'expérimentation. La visualisation des résultats a démontré la présence de nombreux phénomènes physiques provoqués par la grille : sens de l'écoulement, zones de recirculations dans l'entrefer, zones de fortes pressions à l'extrémité des bandelettes, zones de faibles pressions dans l'entrefer, important gradient d'énergie cinétique turbulente à l'amont de la grille,... D'autre part, l'utilisation d'un modèle de turbulence anisotrope semble indispensable pour modéliser tous ces phénomènes. Cependant, la comparaison des résultats entre un modèle RSM et une approche LES a montré des différences importantes dans l'entrefer. Ces différences s'expliquent certainement par la dispense de modèle de turbulence pour une simulation en LES qui gère mieux les transitions de régimes. Dans un second temps, l'application du suivi de particules a mis en évidence le rôle des phénomènes hydrodynamiques causés par la forme particulière de la grille. L'analyse des trajectoires de particules, de propriétés différentes, a montré que l'efficacité de séparation dépend à la fois de la nature des particules mais aussi des phénomènes physiques générés par la grille.
Concernant le comportement global de l'ouvrage, la technique d'homogénéisation de la grille a montré une différence d'environ 20% sur les champs de vitesse à proximité de la grille. En revanche, l'erreur relative obtenue sur les variables globales comme par exemple les vitesses moyennes ou les débits en circulation est de à 3 %. Par conséquent, cette technique est très
adaptée pour étudier le comportement global de l'ouvrage, même si elle ne permet pas de conclure sur les champs de vitesse à proximité de la grille. Par ailleurs, l'analyse de sensibilité au modèle de turbulence a démontré l'importance du choix d'un bon modèle. Les résultats ont montré des profils non-cohérents en utilisant un modèle isotope de type k-ε ou k-ε RNG. Le choix d'un modèle RSM est donc totalement justifié. Si l'utilisation d'une approche LES permet de reproduire les phénomènes instationnaires dans l'ouvrage, le modélisateur doit impérativement prendre en compte l'importante durée du temps de calcul. Par rapport au transport solide, du fait de l'approche conceptuelle par un milieu poreux, l'efficacité de l'ouvrage ne pourra pas être déterminée avec précision. Ainsi, la technique adoptée a été d'observer le temps de séjour dans l'ouvrage et de classer les particules en fonction de leurs caractéristiques. Ce classement permet de différencier les particules soumises à un processus de sédimentation et celles susceptibles de traverser la grille.

Étude d'un ouvrage réel

Après avoir validé la méthodologie multi-échelle en confrontant les résultats obtenus sur un modèle physique, nous avons utilisé l'approche pour étudier un ouvrage réel en fonctionnement. L'instrumentation du séparateur de Trouville-sur-Mer a permis d'assurer le suivi hydraulique pour une période d'environ 7 mois. De plus, les données topographiques ont servi à reconstruire un modèle 3D en utilisant la procédure développée dans le cadre de la thèse. Les résultats obtenus à partir des deux approches ont permis de visualiser le comportement d'un ouvrage de terrain avec et sans fonctionnement de la surverse, avec et sans colmatage de la grille. L'ouvrage de Trouville a également montré l'aptitude du séparateur à retenir des macro-déchets et des sédiments.

Utilisation des modèles pour optimiser le fonctionnement des ouvrages

Le dernier chapitre de la thèse est le résultat d'une étude classique en CFD. La méthode numérique a été appliquée dans l'objectif d'optimiser le fonctionnement de l'ouvrage. A l'échelle locale, le choix s'est porté sur la forme des grilles. Une comparaison a été faite entre les grilles de type métal déployé et les plaques perforées. Une différence importante est constatée aussi bien sur le comportement hydrodynamique que sur le transport solide. Les forces de pression et les gradients d'énergie cinétique turbulente sont nettement plus marqués pour les grilles à métal déployé, ce qui par conséquent augmente l'efficacité de ce type de grille. Du point de vue du transport solide, ces différences permettent de conclure que les grilles de type métal déployé sont moins soumises au colmatage et favorisent l'expulsion des particules lorsqu'elles approchent de la grille.
A l'échelle globale, différents aménagements ont été testé pour modifier l'écoulement. L'objectif de l'optimisation à l'échelle de l'ouvrage était de trouver des aménagements permettant d'augmenter les vitesses à proximité de la grille (utilisation de déflecteurs) et de favoriser la sédimentation sous la grille (installation d'une plaque pour diminuer les vitesses). Le premier cas de figure a montré une forte perturbation de l'écoulement avec l'apparition de nombreuses zones mortes. L'installation d'une plaque horizontale ou d'une paroi conique s'est montrée plus avantageuse d'autant plus que ce type de système permet de piéger des particules.
Publications scientifiques dans des revues à comité de lecture

Vivien Schmitt, Matthieu Dufresne, José Vazquez, Martin Fischer, Antoine Morin, "Optimization of a hydrodynamic separator using a multi-scale computational fluid dynamics approach". Water Science and Technology (in press 31 may 2013)

Schmitt V., Dufresne M., Vazquez J., Morin A., Investigation expérimentale et numérique d'un séparateur hydrodynamique: du pilote à la finalité d'une installation en fonctionnement. La Houille Blanche (accepté pour publication)

Vivien Schmitt, Matthieu Dufresne, José Vazquez, Martin Fischer, Antoine Morin, "CFD multiscale investigation of flow and sedimentation pattern in a hydrodynamic separator". Journal of Environmental Engineering (article en cours de review)

Vivien Schmitt, Matthieu Dufresne, José Vazquez, Martin Fischer, Antoine Morin, "Separation efficiency of a hydrodynamic separator using a 3D CFD approach" Water Science and Technology (article en cours de review)

Vivien Schmitt, Matthieu Dufresne, José Vazquez, Martin Fischer, Antoine Morin & Flochel J.-M. Investigation expérimentale et numérique d'un ouvrage de capture à macro-déchets. Techniques Sciences Méthodes (article en cours de review)

Communications scientifiques dans des conférences à comité de lecture

Vivien Schmitt, Matthieu Dufresne, José Vazquez, Martin Fischer, Antoine Morin, "Optimization of a hydrodynamic separator using a multi-scale computational fluid dynamics approach", Proceedings of the 9th International Conference on Urban Drainage Modelling, Belgrade, Serbia, 3-7 septembre 2012.

Vivien Schmitt, Matthieu Dufresne, José Vazquez, Martin Fischer, Antoine Morin. Separation efficiency of a hydrodynamic separator using a 3D CFD approach. 8th international conference NOVATECH, Lyon 2013
